CERTIFICATE OF CALIBRATION # OM2021-2 FOR LARSON DAVIS PRECISION INTEGRATING SOUND LEVEL METER

Model 831	Serial No. 0002649
	ID No. N/A
With Microphone 377B02	Serial No. 112827
With Preamplifier PRM831	Serial No. 015303

Customer: Odin Metrology, Inc.	
Thousand Oaks, CA 91320	P.O. No. N/A

was tested and met Larson Davis specifications at the points tested and as outlined in ANSI S1.4-1983 (R2006) Type 1; IEC 61672-2002 Class1; IEC 60651-2001 Type 1

on 12 MAR 2021

BY HAROLD LYNCH **Service Manager**

As received and as left condition: Within Specification. Re-calibration due on: 12 MAR 2022

Certified References*						
Mfg.	<u>Type</u>	<u>Serial No</u> .	Cal Date	Due Date		
B&K	1051	1777523	28 SEP 2020	28 SEP 2021		
B&K	2636	1423390	04 JAN 2021	04 JAN 2022		
B&K	4226	3274134	30 NOV 2020	30 NOV 2021		
B&K	4231	1770857	10 SEP 2020	10 SEP 2021		
HP	34401A	MY45023668	28 JAN 2021	28 JAN 2022		
HP	3458A	2823A07179	21 JUL 2020	21 JUL 2021		
	Performed in Complia	ance with ANSI, NCS	L Z-540-1, 1994			
and ISO 17025, ISO 9001:2015 Certification NQA No. 11252						
*References are traceable to NIST (National Institute of Standards and Technology).						
Note: 1	For calibration data s	ee enclosed pages.				

The data represent both "as found" and "as left" conditions.

Reference Test Procedure: ACCT Procedure LxT-831 Version 0.5.1. Rev. 3/12/2014

Temperature	Relative Humidity	Barometric Pressure	
23° C	33 %	993.87 hPa	

Note: This calibration report shall not be reproduced, except in full, without written consent by Odin Metrology, Inc. Signed:

Jarold Lynch

ODIN METROLOGY, INC. CALIBRATION OF SOUND & VIBRATION INSTRUMENTATION

3533 OLD CONEJO ROAD, SUITE 125 THOUSAND OAKS CA 91320 PHONE: (805) 375-0830 FAX: (805) 375-0405

3533 Old Conejo Road, Suite 125 Thousand Oaks, CA 91320 Phone: (805) 375-0830, Fax: (805) 375-0405 www.OdinMetrology.com

Calibration data for

Larson Davis Precision Integrating Sound Level Meter Type 831# 0002649, ID# N/A With Microphone 377B02# 112827 and Preamplifier PRM831# 015303

Performed on March 12, 2021

for

Odin Metrology, Inc.

PO#: N/A Certificate#: OM2021-2 Calibration performed by: HL Environmental Conditions Relative humidity: 33% Ambient temperature: 23°C Ambient pressure: 993.87 hPa The following calibration was performed per ACCT Procedure LxT-831 version 0.5.1.

The data represent both the "As Found" and the "As Left" conditions.

Page No.	Test	IEC Section	Result
	Sound Level Meter (IEC 61672 Class 1)		
3	Internal Clock	Reference Only	See Data
3	Sensitivity Verification with Acoustic Calibrator	3 § 9	See Data
3	Acoustic Frequency Response with Microphone	3 § 11	Pass
3	Self-Generated Noise	3 § 10	See Data
4	Output Impedance with Shorted Output	2 § 9.18	Pass
4	AC Full Scale Output Voltage	Reference Only	See Data
4	DC Full Scale Output Voltage	Reference Only	See Data
4	Reset	2 § 9.17	Pass
4	Overload Indication	3 § 18	Pass
5	DC Linearity	Reference Only	See Data
5	Peak-C Sound Level	3 § 17	Pass
5	Decay Time Constants for Time Weightings Fast and Slow	2 § 9.11	Pass
6	Difference in Indication	3 § 13	Pass
	Frequency Response	3 § 12	
6	A-Weighted	-	Pass
7	C-Weighted		Pass
8	Z-Weighted		Pass
	Single Toneburst Response - Fast Time Weighting	3 § 16	
8	A-Weighted	-	Pass
9	C-Weighted		Pass
9	Z-Weighted		Pass
	Single Toneburst Response - Slow Time Weighting	3 § 16	
9	A-Weighted	0	Pass
10	C-Weighted		Pass
10	Z-Weighted		Pass
10	SEL Response to Repeated Tonebursts	1 § 5.9	Pass
11	Level Linearity	3 § 14, 1 § 5.5.6	Pass
	RTA Octave Filter (IEC 61260 Class 0)		
	Level Verification of Filter+SLM	Reference Only	
13	1/1 Octave		Pass
13	1/3 Octave		Pass
	Filter Check	Reference Only	
14	1/1 Octave		Pass
14	1/3 Octave		Pass
15	Relative Attenuation (1/1 Octave)	§ 5.3	Pass

The expanded uncertainties stated in this document are the maximum expanded uncertainties permitted by IEC 61672-1. Odin Metrology's actual expanded uncertainties are less than or equal to the values stated herein.

Internal Clock

Date and time are transferred from SLM, then the SLM date and time are set according to Odin Metrology's clock and the date and time are transferred from the SLM a second time. Time zones (with minor simplifications) and DST are obeyed.

Local Date/Time: Date and time according to Odin Metrology's clock (Pacific Standard Time) at the time of the clock setting

Location: US state or other location for which the SLM clock is set (some time zone simplifications are made)

UTC Offset: UTC offset for the given location

Daylight Saving Time: whether DST is currently observed for the given location

SLM Clock Before Set: readouts of the SLM's system date and time before any changes are made

SLM Clock After Set: readouts of the SLM's system date and time after setting

Local (Pacific S	Standard Time)	Location	UTC Offset	Daylight	SLM Clock	K Before Set	SLM Cloc	k After Set
Date	Time	LUCATION	(Hr:Min)	Saving Time	Date	Time	Date	Time
03/12/2021	08:14:42 AM	Alaska	-9:00	No	07/10/2015	03:09:06 PM	03/12/2021	07:14:44 AM

Sensitivity Verification with Acoustic Calibrator (IEC 61672-3 § 9)

A sound level calibrator is mounted on the sound level meter and the internal calibration is started. The SLM indication is recorded before and after calibration.

Calibrator Frequency: the frequency of the signal generated by the sound level calibrator

Calibrator SPL: the SPL of the signal generated by the sound level calibrator

SLM SPL Before: SLM indication before internal calibration sequence

SLM SPL After: SLM indication after internal calibration sequence

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Performed with microphone 377B02# 112827, preamplifier PRM831# 015303, and calibrator 4231# 1770857.

Calibrator	Calibrator	SLM SPL	SLM SPL	Uncertainty
Frequency (Hz)	SPL (dB)	Before (dB)	After (dB)	(dB)
1.000.0	114.0	114.01	114.01	0.40

Acoustic Frequency Response with Microphone (61672-3 § 11)

The acoustical frequency response is tested using a multifunction acoustical calibrator type 4226 in C frequency weighting. If a windscreen is used, these data are to be corrected.

Frequency: the frequency of the signal to the sound level meter (frequency of 4226 multifunction acoustic calibrator)

Data Found: the value the sound level meter actually indicates (this is a pressure measurement)

FF Corr: free-field correction for microphone to be added to displayed SLM (pressure) value

Corrected Response: SLM's reading plus the correction indicated

Nominal Value: what the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Uncertainty: maximum expanded uncertainty of measurement according to IEC with approximately 95% confidence level (coverage factor Deviation: the difference between the nominal value and the data found

Performed with microphone 377B02# 112827	. preamplifier PRM831# 015303. and calibrator 4226# 3274134.	

	Deviation	Uncertainty	nce (dB)	Tolerar	Nominal	Corrected	FF Corr.	Data	Frequency
Pass/Fai	(dB)	(dB)	Maximum	Minimum	Value (dB C)	Response (dB)	(dB)	Found (dB C)	(Hz)
Pass	0.22		112.49	109.49	110.99	111.21	0.00	111.21	31.5
Pass	0.19	0.50	114.18	112.18	113.18	113.37	0.00	113.37	63.0
Pass	0.17		114.83	112.83	113.83	114.00	0.00	114.00	125.0
Pass	0.14	0.40	115.00	113.00	114.00	114.14	0.00	114.14	250.0
Pass	0.16	0.40	115.03	113.03	114.03	114.19	0.04	114.15	500.0
				ence———	———Refer				1,000.0
Pass	0.30		114.83	112.83	113.83	114.13	0.31	113.82	2,000.0
Pass	0.61	0.60	114.18	112.18	113.18	113.80	1.00	112.80	4,000.0
Pass	0.97		112.49	108.49	110.99	111.96	3.39	108.57	8,000.0
Pass	0.99	1.00	109.76	102.76	107.76	108.75	6.77	101.98	12,500.0
Pass	1.58	1.00	107.97	89.47	105.47	107.05	8.35	98.70	16,000.0

Self-Generated Noise (61672-3 § 10)

For A-weighting, the noise is measured with the microphone installed and an acoustic chamber on the microphone which eliminates ambient noise. For C- and Z-weighting, the input is terminated with a shorted dummy microphone of equal capacitance.

Frequency Weighting: the frequency weighting setting on the sound level meter

Typical Noise: the typical self-generated noise level according to the manufacturer

Data Found: the 30-second Leq value the sound level meter indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Frequency	Typical	Data	Uncertainty
Weighting	Noise (dB)	Found (dB)	(dB)
А	17.00	15.46	
С	12.00	12.22	0.003
Z	19.00	20.93	

Output Impedance with Shorted Output (61672-2 § 9.18)

When the output on the meter is shorted, the SPL may not change by more than the specified tolerance. This test is not performed at 114.0 dB due to a characteristic of the 831 to turn off with the output shorted (see page A-8 in the 831 reference manual).

Frequency: the frequency of the signal to the sound level meter

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate

Tolerance: the acceptable difference from nominal, including the stated uncertainty, for what the sound level meter should indicate Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Frequency	Input	Nominal	Tolerance	Data	Uncertainty	Deviation	Pass/Fail
(kHz)	Level (dB)	Value (dB)	(± dB)	Found (dB)	(dB)	(dB)	
1.0	90.0	90.0	0.1	89.96	0.10	-0.04	Pass

AC Full Scale Output Voltage

The sound level meter is set up to indicate full-scale on the display and the AC output is measured. Input frequency is 1,000 Hz. SPL Reading: the input to the sound level meter is adjusted so that it indicates this full-scale value

Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor *k*=2)

	JFL	Dala	Uncertainty
_	Reading (dB)	Found (mV)	(mV)
	140.04	2,343.45	0.10

DC Full Scale Output Voltage

The sound level meter is set up to indicate full-scale on the display and the DC output is measured. Input frequency is 1,000 Hz.

SPL Reading: the input to the sound level meter is adjusted so that it indicates this full-scale value

Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

SPL	Data	Uncertainty
Reading (dB)	Found (mV)	(mV)
140.04	1,193.16	0.10

Reset (IEC 61672-2 § 9.17)

It is verified that the display resets after pressing the reset button on the SLM. The initial input level is FSD.

Before: displayed value before pressing the reset key

After: displayed value after pressing the reset key

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

	Before (dB)	After (dB)	Tolerance (< dB)	Uncertainty (dB)	Pass/Fail	
_	120.13	38.64	50.0	0.003	Pass	

Overload Indication (IEC 61672-3 § 18)

The first Leq indication of overload at a level higher than FSD-1 dB is recorded for both positive- and negative-one-half-cycle signals at 4.0 kHz. The difference between the two levels may not exceed the specified tolerance.

Overload Level: input signal level (amplitude) at which the meter was found to overload for the specified input signal type

Difference: difference between the overload levels for the positive and negative half-cycle signal inputs

Tolerance: the acceptable difference, including the stated uncertainty, between positive and negative overload levels according to IEC Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Overload Level (dB)		Difference	Tolerance	Uncertainty	Pass/Fail	
Positive	Positive Negative		(≤ dB)	(dB)	Fass/Fall	
137.91	137.94	0.03	1.5	0.3	Pass	

Calibration Data for 831# 0002649 ID# N/A

DC Linearity

The sound level meter is set up to indicate full-scale on the display and the DC-output voltage is recorded in decreasing 10-dB steps.

Rel. Input Level: the level (amplitude) of the signal to the sound level meter relative to the reference of full-scale

Data Found: the measured DC-output from the SLM

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Sensitivity: the calculated sensitivity based on the DC-outputs at the highest and lowest levels indicated

Rel. Input	Data	Uncertainty	Sensitivity
Level (dB)	Found (mV)	(mV)	(mV/dB)
0.0	1,393.68		
-10.0	1,294.28		
-20.0	1,194.68		
-30.0	1,094.26		
-40.0	994.95	0.40	
-50.0	896.63	0.40	
-60.0	797.18		9.95
-70.0	696.74		
-80.0	597.31		
-90.0	497.93		
-100.0	398.56		
-110.0	302.21	0.05	
-120.0	225.42		

Peak-C Sound Level (IEC 61672-3 §17)

The sound level meter's peak-C response to single one-cycle and positive- and negative-going half-cycle sinusoidal signals is measured. Input Level: the steady-state level (amplitude) of the signal to the sound level meter from which the one- and half-cycle signals are Cycles in Test Signal: the type of burst used (one period, positive half period, or negative half period)

Frequency: the frequency of the signal to the sound level meter

Nominal Value: what the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable difference from nominal for what the sound level meter should indicate according to IEC 61672

 $L_{\ensuremath{\texttt{Cpeak}}}$ Found: the peak-C sound level value indicated on the sound level meter

Data Found: the difference between the peak-C sound level and the steady-state C-weighted sound level as indicated by the sound level Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found; extended: extended by the expanded uncertainty of measurement

	Input Level	Cycles in	Frequency	Nominal	Tolerance	L _{Cpeak}	Data	Uncertainty	Deviation	Pass/Fail
_	(dB C)	Test Signal	(Hz)	Value (dB)	(± dB)	Found (dB)	Found (dB)	(dB)	(dB)	1 433/1 41
		One	8,000.00	3.40	2.00	134.71	2.71		-0.69	Pass
	132.00	Positive 1/2	500.00	2.40	1.00	134.21	2.21	0.40	-0.19	Pass
		Negative 1/2	500.00	2.40	1.00	134.13	2.13		-0.27	Pass

Decay Time Constants for Time Weightings Fast and Slow (IEC 61672-2 § 9.11)

The decay rate of the display value on the sound level meter is measured after a steady 4.0 kHz signal is removed.

Time Weighting: the time weighting setting on the sound level meter

Nominal Rate: the decay rate the sound level meter should exhibit according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Measured Rate: the actual decay rate measured on the sound level meter

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Time	Nominal	Tolerance (dB/s)		Measured	Uncertainty	Deviation	Pass/Fail	
Weighting	Rate (dB/s)	Minimum	Maximum	Rate (dB/s)	(dB/s)	(dB/s)	F a55/1 all	
Fast	N/A	27.00	N/A	38.33	2.00	N/A	Pass	
Slow	4.35	3.80	4.90	4.49	0.40	0.14	Pass	

Difference in Indication (IEC 61672-3 § 13)

With reference to fast time weighting and A frequency weighting at the SLM reference level indicated, the measurements of all other frequency weighting parameters and all other time weighting parameters may not differ by more than the specified tolerance.

Time Weighting: time weighting setting on the SLM

Frequency Weighting: frequency weighting setting on the SLM

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable difference from nominal, including the stated uncertainty, for what the sound level meter should indicate Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Frequency	Input	Nominal	Tolerance	Data	Uncertainty	Deviation	Pass/Fail								
g Weighting	Level (dB)	Value (dB)	(± dB)	Found (dB)	(dB)	(dB)	Fass/Fall								
A		Reference		Reference		Refer									
С			0.2	114.01	0.1	0.01	Pass								
Z	114.0	114.0	0.2	114.00		0.00	Pass								
A	114.0		114.0	114.0	114.0	114.0	114.0	114.0	114.0	114.0	114.0		114.01		0.01
С			0.1	114.01	0.1	0.01	Pass								
Z				114.00		0.00	Pass								
	y Weighting A C Z A	Weighting Level (dB) A C Z A A A	Weighting Level (dB) Value (dB) A C Z A A A 114.0 114.0	Weighting Level (dB) Value (dB) (± dB) A	Weighting Level (dB) Value (dB) (± dB) Found (dB) A	Weighting Level (dB) Value (dB) (± dB) Found (dB) (dB) A	Weighting Level (dB) Value (dB) (± dB) Found (dB) (dB) (dB) A								

A-Frequency-Weighted Frequency Response (61672-3 § 12)

The SLM's frequency response is recorded by varying the frequency as specified. The reference level is FSD-45 dB at 1.0 kHz. IEC 61672 defines this test from 63 Hz to 16 kHz; "N/A" is reported instead of "Fail" for frequencies outside of this range.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

						B :	
Frequency	Nominal		ince (dB)	Data	Uncertainty	Deviation	Pass/Fail
(Hz)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
10.0	-70.4	N/A	-67.4	-68.18		2.25	Pass
12.6	-63.4	N/A	-60.9	-62.93		0.44	Pass
15.8	-56.7	-60.7	-54.7	-56.60		0.09	Pass
20.0	-50.5	-52.5	-48.5	-50.43		0.02	Pass
25.1	-44.7	-46.2	-42.7	-44.70		0.00	Pass
31.6	-39.4	-40.9	-37.9	-39.45		-0.01	Pass
39.8	-34.6	-35.6	-33.6	-34.64	0.50	-0.01	Pass
50.1	-30.2	-31.2	-29.2	-30.30	0.50	-0.07	Pass
63.1	-26.2	-27.2	-25.2	-26.22		-0.02	Pass
79.4	-22.5	-23.5	-21.5	-22.53		-0.03	Pass
100.0	-19.1	-20.1	-18.1	-19.18		-0.04	Pass
125.9	-16.1	-17.1	-15.1	-16.13		-0.03	Pass
158.5	-13.4	-14.4	-12.4	-13.39		-0.04	Pass
199.5	-10.9	-11.9	-9.9	-10.90		-0.03	Pass
251.2	-8.6	-9.6	-7.6	-8.67		-0.04	Pass
316.2	-6.6	-7.6	-5.6	-6.65		-0.04	Pass
398.1	-4.8	-5.8	-3.8	-4.85	0.40	-0.04	Pass
501.2	-3.2	-4.2	-2.2	-3.27	0.40	-0.04	Pass
631.0	-1.9	-2.9	-0.9	-1.94		-0.04	Pass
794.3	-0.8	-1.8	0.2	-0.86		-0.04	Pass
1,000.0	0.0			Refere	nce———		
1,258.9	0.6	-0.4	1.6	0.56	0.40	-0.03	Pass
1,584.9	1.0	0.0	2.0	0.96		-0.02	Pass
1,995.3	1.2	0.2	2.2	1.18		-0.02	Pass
2,511.9	1.3	0.3	2.3	1.26		-0.01	Pass
3,162.3	1.2	0.2	2.2	1.20		0.00	Pass
3,981.1	1.0	0.0	2.0	0.97	0.60	0.00	Pass
5,011.9	0.5	-1.0	2.0	0.56		0.01	Pass
6,309.6	-0.1	-2.1	1.4	-0.11		0.01	Pass
7,943.3	-1.1	-3.6	0.4	-1.13		-0.02	Pass
10,000.0	-2.5	-5.5	-0.5	-2.53		-0.04	Pass
12,589.3	-4.3	-9.3	-2.3	-4.32		0.00	Pass
15,848.9	-6.6	-22.6	-4.1	-6.54	1.00	0.06	Pass
19,952.6	-9.3	N/A	-6.3	-9.73		-0.42	Pass
					L		

C-Frequency-Weighted Frequency Response (61672-3 § 12)

The SLM's frequency response is recorded by varying the frequency as specified. The reference level is FSD-45 dB at 1.0 kHz. IEC 61672 defines this test from 63 Hz to 16 kHz; "N/A" is reported instead of "Fail" for frequencies outside of this range.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Frequency	Nominal		ince (dB)	Data	Uncertainty	Deviation	D / [- ''
(Hz)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	Pass/Fail
10.0	-14.3	N/A	-11.3	-14.38		-0.05	Pass
12.6	-11.2	N/A	-8.7	-11.29		-0.04	Pass
15.8	-8.5	-12.5	-6.5	-8.55		-0.01	Pass
20.0	-6.2	-8.2	-4.2	-6.24		0.00	Pass
25.1	-4.4	-5.9	-2.4	-4.41		0.00	Pass
31.6	-3.0	-4.5	-1.5	-3.02		-0.01	Pass
39.8	-2.0	-3.0	-1.0	-2.01	0.50	-0.01	Pass
50.1	-1.3	-2.3	-0.3	-1.26	0.50	0.03	Pass
63.1	-0.8	-1.8	0.2	-0.84		-0.02	Pass
79.4	-0.5	-1.5	0.5	-0.53		-0.03	Pass
100.0	-0.3	-1.3	0.7	-0.30		0.00	Pass
125.9	-0.2	-1.2	0.8	-0.20		-0.03	Pass
158.5	-0.1	-1.1	0.9	-0.12		-0.04	Pass
199.5	0.0	-1.0	1.0	-0.07		-0.04	Pass
251.2	0.0	-1.0	1.0	-0.04		-0.04	Pass
316.2	0.0	-1.0	1.0	-0.02		-0.04	Pass
398.1	0.0	-1.0	1.0	-0.01	0.40	-0.04	Pass
501.2	0.0	-1.0	1.0	0.00	0.40	-0.04	Pass
631.0	0.0	-1.0	1.0	-0.01		-0.04	Pass
794.3	0.0	-1.0	1.0	-0.05		-0.07	Pass
1,000.0	0.0			Refere			
1,258.9	0.0	-1.0	1.0	-0.06	0.40	-0.03	Pass
1,584.9	-0.1	-1.1	0.9	-0.11		-0.02	Pass
1,995.3	-0.2	-1.2	0.8	-0.18		-0.01	Pass
2,511.9	-0.3	-1.3	0.7	-0.31		-0.01	Pass
3,162.3	-0.5	-1.5	0.5	-0.50		0.00	Pass
3,981.1	-0.8	-1.8	0.2	-0.81	0.60	0.01	Pass
5,011.9	-1.3	-2.8	0.2	-1.28		0.01	Pass
6,309.6	-2.0	-4.0	-0.5	-1.99		0.01	Pass
7,943.3	-3.0	-5.5	-1.5	-3.06		-0.05	Pass
10,000.0	-4.4	-7.4	-2.4	-4.48		-0.08	Pass
12,589.3	-6.2	-11.2	-4.2	-6.24		0.00	Pass
15,848.9	-8.5	-24.5	-6.0	-8.47	1.00	0.06	Pass
19,952.6	-11.2	N/A	-8.2	-11.66		-0.41	Pass

Z-Frequency-Weighted Frequency Response (61672-3 § 12)

The SLM's frequency response is recorded by varying the frequency as specified. The reference level is FSD-45 dB at 1.0 kHz. IEC 61672 defines this test from 63 Hz to 16 kHz; "N/A" is reported instead of "Fail" for frequencies outside of this range.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Frequency	Nominal		nce (dB)	Data	Uncertainty	Deviation	
(Hz)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	Pass/Fail
10.0		N/A	3.0	-0.21		-0.21	Pass
12.6		N/A	2.5	-0.14		-0.14	Pass
15.8		-4.0	2.0	-0.12		-0.12	Pass
20.0		-2.0	2.0	-0.08		-0.08	Pass
25.1		-1.5	2.0	-0.07		-0.07	Pass
31.6		-1.5	1.5	-0.05		-0.05	Pass
39.8		-1.0	1.0	-0.05	0.50	-0.05	Pass
50.1		-1.0	1.0	-0.02	0.50	-0.02	Pass
63.1		-1.0	1.0	-0.04		-0.04	Pass
79.4		-1.0	1.0	-0.04		-0.04	Pass
100.0		-1.0	1.0	-0.07		-0.07	Pass
125.9		-1.0	1.0	-0.04		-0.04	Pass
158.5		-1.0	1.0	-0.04		-0.04	Pass
199.5		-1.0	1.0	-0.04		-0.04	Pass
251.2		-1.0	1.0	-0.04		-0.04	Pass
316.2		-1.0	1.0	-0.05		-0.05	Pass
398.1	0.0	-1.0	1.0	-0.05	0.40	-0.05	Pass
501.2	0.0	-1.0	1.0	-0.04	0.40	-0.04	Pass
631.0		-1.0	1.0	-0.04		-0.04	Pass
794.3		-1.0	1.0	-0.08		-0.08	Pass
1,000.0				Refere			
1,258.9		-1.0	1.0	-0.04	0.40	-0.04	Pass
1,584.9		-1.0	1.0	-0.03		-0.03	Pass
1,995.3		-1.0	1.0	-0.03		-0.03	Pass
2,511.9		-1.0	1.0	-0.02		-0.02	Pass
3,162.3		-1.0	1.0	-0.02		-0.02	Pass
3,981.1		-1.0	1.0	-0.02	0.60	-0.02	Pass
5,011.9		-1.5	1.5	-0.01		-0.01	Pass
6,309.6		-2.0	1.5	0.00		0.00	Pass
7,943.3		-2.5	1.5	-0.03		-0.03	Pass
10,000.0		-3.0	2.0	-0.03		-0.03	Pass
12,589.3		-5.0	2.0	0.00		0.00	Pass
15,848.9		-16.0	2.5	-0.09	1.00	-0.09	Pass
19,952.6		N/A	3.0	-0.33		-0.33	Pass

Single Toneburst Response (Fast Time Weighting, A Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672

Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}-L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Pass/Fail	
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	F a55/1 all	
1,000.00	0.0	-0.5	0.5	-0.03		-0.03	Pass	
500.00	-0.1	-0.6	0.4	-0.12		-0.02	Pass	
200.00	-1.0	-1.5	-0.5	-1.06		-0.06	Pass	
100.00	-2.6	-3.6	-1.6	-2.80		-0.20	Pass	
50.00	-4.8	-5.8	-3.8	-4.93		-0.13	Pass	
20.00	-8.3	-9.3	-7.3	-8.53	0.20	-0.23	Pass	
10.00	-11.1	-12.1	-10.1	-11.49	0.20	-0.39	Pass	
5.00	-14.1	-15.1	-13.1	-14.33		-0.23	Pass	
2.00	-18.0	-19.5	-17.0	-18.33		-0.33	Pass	
1.00	-21.0	-23.0	-20.0	-21.33		-0.33	Pass	
0.50	-24.0	-26.5	-23.0	-24.37		-0.37	Pass	
0.25	-27.0	-30.0	-26.0	-27.41		-0.41	Pass	

Single Toneburst Response (Fast Time Weighting, C Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale.

Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672

Data Found: the value the sound level meter actually indicates; equal to $L_{CFmax(toneburst)}$ - $L_{CF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

 Deviation: the difference between the nominal value and the data found

 Toneburst
 Nominal
 Tolerance (dB)
 Data
 Uncertainty
 Deviation

 Duration (ms)
 Value (dB)
 Minimum
 Maximum
 Found (dB)
 (dB)
 (dB)

loneburst	Nominal	Tolerance (dB)		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	Fass/Fall
1,000.00	0.0	-0.5	0.5	0.18		0.18	Pass
500.00	-0.1	-0.6	0.4	0.09		0.19	Pass
200.00	-1.0	-1.5	-0.5	-0.89		0.11	Pass
100.00	-2.6	-3.6	-1.6	-2.50		0.10	Pass
50.00	-4.8	-5.8	-3.8	-4.84		-0.04	Pass
20.00	-8.3	-9.3	-7.3	-8.20	0.20	0.10	Pass
10.00	-11.1	-12.1	-10.1	-11.03	0.20	0.07	Pass
5.00	-14.1	-15.1	-13.1	-13.99		0.11	Pass
2.00	-18.0	-19.5	-17.0	-18.04		-0.04	Pass
1.00	-21.0	-23.0	-20.0	-20.87		0.13	Pass
0.50	-24.0	-26.5	-23.0	-24.11		-0.11	Pass
0.25	-27.0	-30.0	-26.0	-26.99		0.01	Pass

Single Toneburst Response (Fast Time Weighting, Z Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{ZFmax(toneburst)}-L_{ZF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

	Deviation	Uncertaintv	Data	nce (dB)	Tolera	Nominal	Toneburst
Pass/Fail	(dB)	(dB)	Found (dB)	Maximum	Minimum	Value (dB)	Duration (ms)
Pass	-0.02		-0.02	0.5	-0.5	0.0	1,000.00
Pass	-0.01		-0.11	0.4	-0.6	-0.1	500.00
Pass	-0.07		-1.07	-0.5	-1.5	-1.0	200.00
Pass	-0.09		-2.69	-1.6	-3.6	-2.6	100.00
Pass	-0.32		-5.12	-3.8	-5.8	-4.8	50.00
Pass	-0.23	0.20	-8.53	-7.3	-9.3	-8.3	20.00
Pass	-0.12	0.20	-11.22	-10.1	-12.1	-11.1	10.00
Pass	-0.28		-14.38	-13.1	-15.1	-14.1	5.00
Pass	-0.37		-18.37	-17.0	-19.5	-18.0	2.00
Pass	-0.41		-21.41	-20.0	-23.0	-21.0	1.00
Pass	-0.19		-24.19	-23.0	-26.5	-24.0	0.50
Pass	-0.29		-27.29	-26.0	-30.0	-27.0	0.25

Single Toneburst Response (Slow Time Weighting, A Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to L_{AFmax(toneburst)}-L_{AF(steady-state)}

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Toneburst	Nominal	Tolerance (dB) Minimum Maximum		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)			Found (dB)	(dB)	(dB)	F 455/1 all
1,000.0	-2.0	-2.5	-1.5	-2.09		-0.09	Pass
500.0	-4.1	-4.6	-3.6	-4.16		-0.06	Pass
200.0	-7.4	-7.9	-6.9	-7.56		-0.16	Pass
100.0	-10.2	-11.2	-9.2	-10.36		-0.16	Pass
50.0	-13.1	-14.1	-12.1	-13.27	0.20	-0.17	Pass
20.0	-17.0	-18.5	-16.0	-17.19		-0.19	Pass
10.0	-20.0	-22.0	-19.0	-20.17		-0.17	Pass
5.0	-23.0	-25.5	-22.0	-23.17		-0.17	Pass
2.0	-27.0	-30.0	-26.0	-27.15		-0.15	Pass

Single Toneburst Response (Slow Time Weighting, C Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale.

Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672

Data Found: the value the sound level meter actually indicates; equal to $L_{CFmax(toneburst)}-L_{CF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolerance (dB)		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	1 400/1 411
1,000.0	-2.0	-2.5	-1.5	-1.87		0.13	Pass
500.0	-4.1	-4.6	-3.6	-3.96		0.14	Pass
200.0	-7.4	-7.9	-6.9	-7.35		0.05	Pass
100.0	-10.2	-11.2	-9.2	-10.12		0.08	Pass
50.0	-13.1	-14.1	-12.1	-13.06	0.20	0.04	Pass
20.0	-17.0	-18.5	-16.0	-16.99		0.01	Pass
10.0	-20.0	-22.0	-19.0	-19.94		0.06	Pass
5.0	-23.0	-25.5	-22.0	-22.95		0.05	Pass
2.0	-27.0	-30.0	-26.0	-26.90		0.10	Pass

Single Toneburst Response (Slow Time Weighting, Z Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672

Data Found: the value the sound level meter actually indicates; equal to $L_{ZFmax(toneburst)}-L_{ZF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

			aata reana	i falae alla ale			Bernauern une an
Pass/Fail	Deviation	Uncertainty	Data	ince (dB)	Tolera	Nominal	Toneburst
F 855/1 all	(dB)	(dB)	Found (dB)	Maximum	Minimum	Value (dB)	Duration (ms)
Pass	-0.08		-2.08	-1.5	-2.5	-2.0	1,000.0
Pass	-0.07		-4.17	-3.6	-4.6	-4.1	500.0
Pass	-0.13		-7.53	-6.9	-7.9	-7.4	200.0
Pass	-0.14		-10.34	-9.2	-11.2	-10.2	100.0
Pass	-0.17	0.20	-13.27	-12.1	-14.1	-13.1	50.0
Pass	-0.15		-17.15	-16.0	-18.5	-17.0	20.0
Pass	-0.14		-20.14	-19.0	-22.0	-20.0	10.0
Pass	-0.14		-23.14	-22.0	-25.5	-23.0	5.0

-26.0

SEL Response to Repeated Tonebursts (61672-1 § 5.9)

-27.0

2.0

The sound level meter's sound exposure level (SEL) response to repeated tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale.

-27.13

-0.13

Pass

Toneburst Duration: the length of time each burst lasts

Nominal Value: the value the sound level meter should indicate according to IEC 61672

-30.0

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AE(toneburst)}$ - $L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Deviation, the underence between the normal value and the data round							
Toneburst	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Minimum Maximum		(dB)	(dB)	1 433/1 41
1000.0	0.0	-0.5	0.5	-0.03		-0.03	Pass
500.0	-3.0	-3.5	-2.5	-3.13		-0.13	Pass
200.0	-7.0	-7.5	-6.5	-7.11		-0.11	Pass
100.0	-10.0	-11.0	-9.0	-10.12		-0.12	Pass
50.0	-13.0	-14.0	-12.0	-12.42		0.58	Pass
20.0	-17.0	-18.0	-16.0	-16.44	0.20	0.56	Pass
10.0	-20.0	-21.0	-19.0	-19.33	0.20	0.67	Pass
5.0	-23.0	-24.0	-22.0	-22.35		0.65	Pass
2.0	-27.0	-28.5	-26.0	-26.43		0.57	Pass
1.0	-30.0	-32.0	-29.0	-30.17		-0.17	Pass
0.5	-33.0	-35.5	-32.0	-32.51		0.49	Pass
0.25	-36.0	-39.0	-35.0	-35.54		0.46	Pass

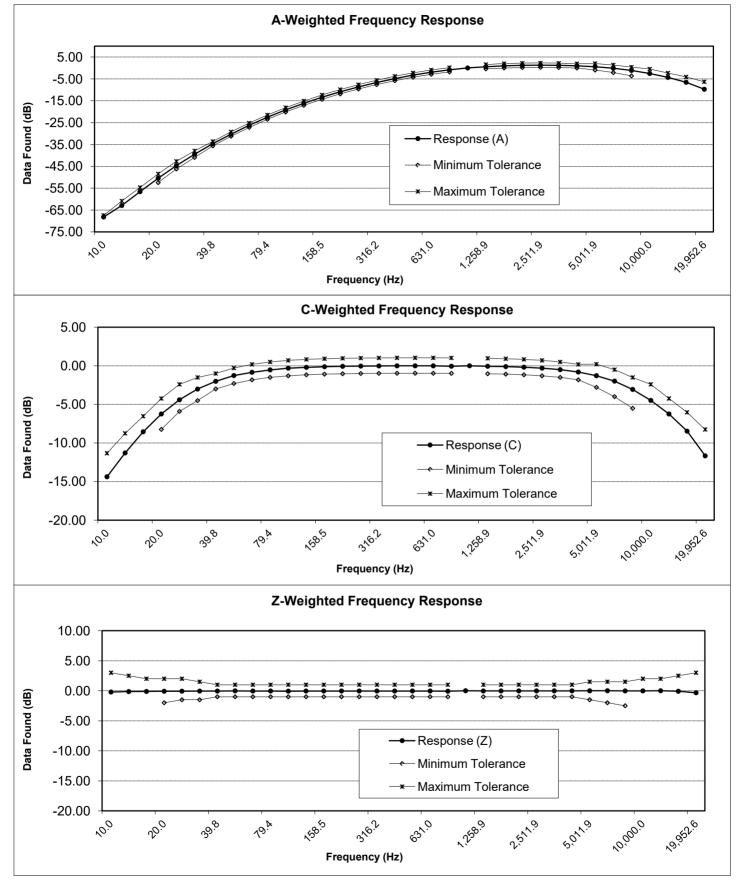
Level Linearity (IEC 61672-3 § 14, IEC 61672-1 § 5.5.6)

Level linearity is tested in A-weighting at 8.0 kHz. Increasing input levels continue up to the first indication of overload. The test is continued with decreasing input levels down to the lower limit or the first indication of underrange.

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable difference, including the stated uncertainty, from nominal according to IEC 61672


Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found; differential: current and previous measurement is not allowed to exceed 0.5 dB according to IEC 61672-1 § 5.5.6

Input	Nominal	Tolerance	Data Found	Uncertainty	Deviat	ion (dB)	Deec /F
Level (dB)	Value (dB)	(± dB)	(dB)	(dB)	Measured	Differential	Pass/Fa
114.0				erence 1—			
119.0	119.0		119.05		0.05	N/A	Pass
124.0	124.0		124.05		0.05	0.00	Pass
129.0	129.0		129.05		0.05	0.00	Pass
134.0	134.0		134.05		0.05	0.00	Pass
139.0	139.0		139.03		0.03	-0.02	Pass
140.0	140.0		Overload		N/A	N/A	N/A
141.0	141.0						
142.0	142.0						
143.0	143.0						
144.0	144.0						
145.0	145.0						
146.0	146.0						
147.0	147.0						
148.0	148.0	1.1		0.3			
149.0	149.0						
150.0	150.0						
151.0	151.0						
152.0	152.0						
152.0	153.0						
153.0	153.0						
155.0	155.0						
156.0	156.0						
157.0	157.0						
158.0	158.0						
159.0	159.0						
	160.0						
159.0							
159.0 160.0 161.0	160.0 161.0		rt 2: Decreasing				
159.0 160.0 161.0 Input	160.0 161.0 Nominal	Tolerance	Data Found	Uncertainty		ion (dB)	Pass/Fa
159.0 160.0 161.0 Input Level (dB)	160.0 161.0		Data Found (dB)	Uncertainty (dB)	Deviati Measured	ion (dB) Differential	Pass/Fa
159.0 160.0 161.0 Input Level (dB) 139.0	160.0 161.0 Nominal Value (dB)	Tolerance	Data Found (dB) ———Ref	Uncertainty	Measured	Differential	
159.0 160.0 161.0 Input Level (dB) 139.0 134.0	160.0 161.0 Nominal Value (dB) 134.0	Tolerance	Data Found (dB) 134.06	Uncertainty (dB)	Measured 0.06	Differential N/A	Pass
159.0 160.0 161.0 Input Level (dB) 139.0	160.0 161.0 Nominal Value (dB)	Tolerance	Data Found (dB) ———Ref	Uncertainty (dB)	Measured	Differential	
159.0 160.0 161.0 Input Level (dB) 139.0 134.0	160.0 161.0 Nominal Value (dB) 134.0	Tolerance	Data Found (dB) 134.06	Uncertainty (dB)	Measured 0.06	Differential N/A	Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0	160.0 161.0 Nominal Value (dB) 134.0 129.0	Tolerance	Data Found (dB) 134.06 129.06	Uncertainty (dB)	Measured 0.06 0.06	Differential N/A 0.00	Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0	Tolerance	Data Found (dB) 134.06 129.06 124.06	Uncertainty (dB)	Measured 0.06 0.06 0.06	Differential N/A 0.00 0.00	Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05	Uncertainty (dB)	Measured 0.06 0.06 0.06 0.05	Differential N/A 0.00 0.00 0.00	Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04	Differential N/A 0.00 0.00 0.00 0.00 -0.10	Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.08 -0.06	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.08 -0.06 0.03	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03	Differential N/A 0.00 0.00 0.00 -0.00 -0.04 0.01 0.09 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0	Tolerance	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93	Uncertainty (dB)	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 -0.10	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 58.93	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 124.0 119.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 58.93 53.94	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.06	Differential N/A 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 84.03 79.03 68.93 63.93 58.93 53.94 48.94 43.96	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.06 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.07 -0.07 -0.07 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.04 -0.08 -0.05 -0.03 -0.03 -0.03 -0.05 -0.07 -0.04 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.04 -0.06 -0.03 -0.03 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.07 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.06 -0.06 -0.04 -0.06 -0.06 -0.04 -0.06 -0.04 -0.06 -0.04 -0.06 -0.04 -0.06 -0.04 -	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 -0.01 0.02 -0.01 0.02 -0.01 0.02	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 58.93 53.94 48.94 43.96 38.99	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.06 -0.03 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.07 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.06 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.06 -0.04 -0.07 -0.06 -0.04 -0.07 -0.06 -0.04 -0.06 -0.04 -0.07 -0.06 -0.07 -0.06 -0.04 -0.04 -0.06 -0.04 -0.06 -0.04 -0.04 -0.06 -0.04 -0.04 -0.06 -0.04 -0.04 -0.04 -0.06 -0.04 -0.04 -0.01 -	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 -0.10 0.00 -0.11 0.02 -0.01 0.02 0.03	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 53.94 48.94 43.96 38.99 34.11	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.07 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.07 -0.01 -0.11 -0.11 -0.02 -0.01 -0.11 -0.11 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.11 -0.01 -0.01 -0.11 -0.01 -0.01 -0.11 -0.01 -0.01 -0.11 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.11 -0.01 -0.01 -0.11 -0.01 -	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.11 0.02 -0.01 0.02 0.03 0.13	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 53.94 48.94 43.96 38.99 34.11 29.33	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 -0.04 -0.05 -0.05 -0.05 -0.04 -0.05 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.03 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.04 -0.08 -0.06 -0.07 -0.07 -0.07 -0.07 -0.03 -0.05 -0.04 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.04 -0.04 -0.08 -0.07 -0.07 -0.06 -0.04 -0.04 -0.06 -0.05 -0.07 -0.07 -0.07 -0.07 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.05 -0.04 -0.04 -0.03 -0.05 -0.04 -0.04 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.03 -0.03 -0.05 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.33 -0.33 -0.33 -0.55 -0	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 -0.01 0.02 -0.01 0.02 0.03 0.13 0.22	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 53.94 48.94 43.96 38.99 34.11 29.33 28.37	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.04 -0.06 -0.04 -0.01 0.11 0.33 0.37	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 -0.01 0.02 -0.01 0.02 0.03 0.13 0.22 0.04	Pass Pass Pass Pass Pass Pass Pass Pass
159.0 160.0 161.0 Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	160.0 161.0 Nominal Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	Tolerance (± dB)	Data Found (dB) 134.06 129.06 124.06 119.05 114.05 108.96 103.96 98.92 93.94 89.03 84.03 79.03 74.03 68.93 63.93 53.94 48.94 43.96 38.99 34.11 29.33	Uncertainty (dB) erence 2	Measured 0.06 0.06 0.05 0.05 -0.04 -0.04 -0.08 -0.06 0.03 0.03 0.03 0.03 0.03 0.03 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 -0.04 -0.05 -0.05 -0.05 -0.04 -0.05 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.06 -0.03 -0.07 -0.07 -0.07 -0.07 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.04 -0.08 -0.06 -0.07 -0.07 -0.07 -0.07 -0.03 -0.05 -0.04 -0.06 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.04 -0.04 -0.08 -0.07 -0.07 -0.06 -0.04 -0.04 -0.06 -0.05 -0.07 -0.07 -0.07 -0.07 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.05 -0.04 -0.04 -0.03 -0.05 -0.04 -0.04 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.03 -0.03 -0.05 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.33 -0.33 -0.33 -0.55 -0	Differential N/A 0.00 0.00 0.00 0.00 -0.10 0.00 -0.04 0.01 0.09 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 -0.01 0.02 -0.01 0.02 0.03 0.13 0.22	Pass Pass Pass Pass Pass Pass Pass Pass

Level Verification of Filter+SLM (1/1 Octave)

Relative to 94 dB at 1,000 Hz, it is verified that for each filter center frequency, if the input frequency matches that of the center frequency, the meter should indicate within the tolerance shown.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: frequency of the input signal to the filter

Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

Data Found: the level the sound level meter indicates

Filter Center	Input	Tolerance	Data	Result
Freq. (Hz)	Freq. (Hz)	(± dB)	Found (dB)	Result
7.8	7.8		0.30	Pass
15.6	15.6		0.14	Pass
31.3	31.3		0.07	Pass
62.5	62.5		0.04	Pass
125.0	125.0		0.04	Pass
250.0	250.0	0.5	0.04	Pass
500.0	500.0	0.5	0.03	Pass
1,000.0	1,000.0		0.02	Pass
2,000.0	2,000.0		0.02	Pass
4,000.0	4,000.0		0.01	Pass
8,000.0	8,000.0		-0.02	Pass
16,000.0	16,000.0		0.08	Pass

Level Verification of Filter+SLM (1/3 Octave)

Relative to 94 dB at 1,000 Hz, it is verified that for each filter center frequency, if the input frequency matches that of the center frequency, the meter should indicate within the tolerance shown.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: frequency of the input signal to the filter

Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

Data Found: the level the sound level meter indicates

Data Found: t				
Filter Center	Input	Tolerance	Data	Result
Freq. (Hz)	Freq. (Hz)	(± dB)	Found (dB)	
6.2	6.2		0.44	Pass
7.8	7.8		0.32	Pass
9.8	9.8		0.23	Pass
12.4	12.4		0.20	Pass
15.6	15.6		0.13	Pass
19.7	19.7		0.09	Pass
24.8	24.8		0.07	Pass
31.3	31.3		0.07	Pass
39.4	39.4		0.04	Pass
49.6	49.6		-0.02	Pass
62.5	62.5		0.04	Pass
78.7	78.7		0.03	Pass
99.2	99.2		0.06	Pass
125.0	125.0		0.03	Pass
157.5	157.5		0.04	Pass
198.4	198.4		0.04	Pass
250.0	250.0		0.04	Pass
315.0	315.0	0.5	0.03	Pass
396.9	396.9	0.0	0.03	Pass
500.0	500.0		0.03	Pass
630.0	630.0		0.02	Pass
793.7	793.7		0.02	Pass
1,000.0	1,000.0		0.02	Pass
1,259.9	1,259.9		0.01	Pass
1,587.4	1,587.4		0.01	Pass
2,000.0	2,000.0		0.01	Pass
2,519.8	2,519.8		0.01	Pass
3,174.8	3,174.8		0.01	Pass
4,000.0	4,000.0		0.00	Pass
5,039.7	5,039.7		-0.01	Pass
6,349.6	6,349.6		-0.02	Pass
8,000.0	8,000.0		-0.03	Pass
10,079.4	10,079.4		-0.04	Pass
12,699.2	12,699.2		-0.03	Pass
16,000.0	16,000.0		0.05	Pass
20,158.7	20,158.7		0.28	Pass

Filter Check (1/1 Octave)

At each center frequency in 1/1 octave step size mode, frequencies equaling the center frequency plus and minus one half octave shall cause the filter to respond with attenuation within the limits stated below.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: the input frequency to the filter calculated as plus and minus one half octave from the center Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc. Data Found: the level the sound level meter indicates

Dula i bulla. I			ter maioates				
Filter Center Input		uency (Hz)	Toleran	ice (dB)	Data Fo	und (dB)	Result
Freq. (Hz)	-1/2 Octave	+1/2 Octave	Minimum	Maximum	-1/2 Octave	+1/2 Octave	Result
7.8	5.5	11.0			-4.37	-1.39	Pass
15.6	11.1	22.1			-4.19	-1.62	Pass
31.3	22.1	44.1			-3.97	-1.85	Pass
62.5	44.2	88.3			-3.79	-2.09	Pass
125.0	88.5	176.6			-3.62	-2.33	Pass
250.0	177.0	353.1	-5.7	-1.2	-3.42	-2.54	Pass
500.0	354.0	706.3	-5.7	-1.2	-3.27	-2.82	Pass
1,000.0	707.9	1,412.5			-3.12	-3.11	Pass
2,000.0	1,415.9	2,825.1			-2.98	-3.43	Pass
4,000.0	2,831.8	5,650.2			-2.84	-3.76	Pass
8,000.0	5,663.6	11,300.3			-2.71	-4.14	Pass
16,000.0	11,327.1	22,600.6			-2.47	-5.28	Pass

Filter Check (1/3 Octave)

At each center frequency in 1/3 octave bandwidth, frequencies equaling the center frequency plus and minus one sixth octave shall cause the filter to respond with attenuation within the limits stated below.

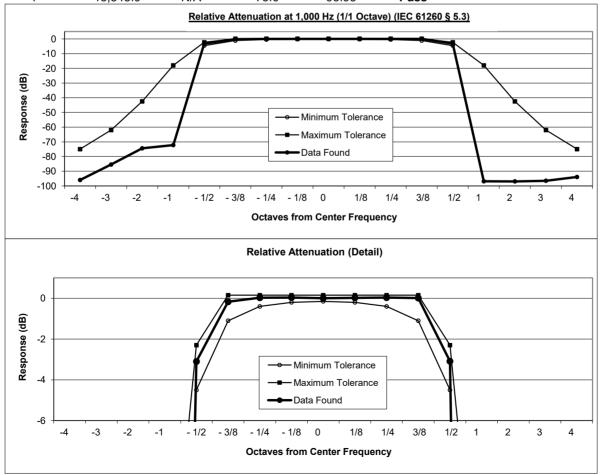
Filter Center Frequency: center frequency setting on the filter

Input Frequency: the input frequency to the filter calculated as plus and minus one sixth octave from the Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

	Data Found: I			Data Found: the level the sound level meter indicates								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-	Input Freq	uency (Hz)	Tolerar	nce (dB)	Data Fo	und (dB)	Result				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-1/6 Octave	+1/6 Octave	Minimum	Maximum							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.8											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						N/A						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		22.1				-5.2	-1.2					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-4.0	-2.0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-2.2					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-5.7	-1.2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		891.3				-3.0	-2.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1,414.8				-2.8	-3.2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
4,000.0 3,565.0 4,488.1 -2.4 -3.9 Pass 5,039.7 4,491.6 5,654.6 -2.3 -4.0 Pass 6,349.6 5,659.1 7,124.4 -2.2 -4.2 Pass 8,000.0 7,130.0 8,976.1 -2.1 -4.4 Pass 10,079.4 8,983.2 11,309.2 -2.0 -4.6 Pass 12,699.2 11,318.2 14,248.7 -1.9 -4.8 Pass 16,000.0 14,260.0 17,952.3 -1.8 -5.1 Pass							-3.6					
5,039.7 4,491.6 5,654.6 -2.3 -4.0 Pass 6,349.6 5,659.1 7,124.4 -2.2 -4.2 Pass 8,000.0 7,130.0 8,976.1 -2.1 -4.4 Pass 10,079.4 8,983.2 11,309.2 -2.0 -4.6 Pass 12,699.2 11,318.2 14,248.7 -1.9 -4.8 Pass 16,000.0 14,260.0 17,952.3 -1.8 -5.1 Pass												
6,349.65,659.17,124.4-2.2-4.2Pass8,000.07,130.08,976.1-2.1-4.4Pass10,079.48,983.211,309.2-2.0-4.6Pass12,699.211,318.214,248.7-1.9-4.8Pass16,000.014,260.017,952.3-1.8-5.1Pass												
8,000.07,130.08,976.1-2.1-4.4Pass10,079.48,983.211,309.2-2.0-4.6Pass12,699.211,318.214,248.7-1.9-4.8Pass16,000.014,260.017,952.3-1.8-5.1Pass												
10,079.4 8,983.2 11,309.2 -2.0 -4.6 Pass 12,699.2 11,318.2 14,248.7 -1.9 -4.8 Pass 16,000.0 14,260.0 17,952.3 -1.8 -5.1 Pass												
12,699.2 11,318.2 14,248.7 -1.9 -4.8 Pass 16,000.0 14,260.0 17,952.3 -1.8 -5.1 Pass												
16,000.0 14,260.0 17,952.3 -1.8 -5.1 Pass												
20,158.7 17,966.5 22,618.5 -1.6 -5.4 Pass						-1.8	-5.1					
	20,158.7	17,966.5	22,618.5			-1.6	-5.4	Pass				

Relative Attenuation at 1,000 Hz (1/1 Octave) (IEC 61260 § 5.3)

The attenuation of the filter at the given frequencies shall be within the stated tolerance. The frequencies are calculated as octaves from the center frequency. The factors defined by IEC 61260 (Table 1) are: ± 4 , ± 3 , ± 2 , ± 1 , $\pm 1/2$, $\pm 3/8$, $\pm 1/4$, $\pm 1/8$ and 0.


Octaves from Center Frequency: the difference, in octaves, between the selected center frequency (1,000 Hz) and the current input frequency

Input Frequency: the input frequency to the filter

Tolerance: the acceptable range for what the filter should indicate according to IEC 61260

Data Found: the level the sound level meter indicates

01 (1 1	Tolerance (dB)		D (
Octaves from	Input	Toleran	ice (aB)	Data	Result
Center Freq.	Freq. (Hz)	Minimum	Maximum	Found (dB)	rtooun
-4	63.1	N/A	-75.0	-95.99	Pass
-3	125.9	N/A	-62.0	-85.47	Pass
-2	251.2	N/A	-42.5	-74.42	Pass
-1	-1 501.2		-18.0	-72.21	Pass
- 1/2	- 1/2 707.9		-2.3	-3.10	Pass
- 3/8	771.8	-1.1	0.2	-0.17	Pass
- 1/4	841.4	-0.4	0.2	0.03	Pass
- 1/8	917.3	-0.2	0.2	0.04	Pass
0	1,000.0	-0.2	0.2	0.00	Pass
1/8	1,090.2	-0.2	0.2	0.02	Pass
1/4	1,188.5	-0.4	0.2	0.03	Pass
3/8	1,295.7	-1.1	0.2	0.01	Pass
1/2	1,412.5	-4.5	-2.3	-3.09	Pass
1	1,995.3	N/A	-18.0	-96.85	Pass
2	3,981.1	N/A	-42.5	-96.92	Pass
3	7,943.3	N/A	-62.0	-96.49	Pass
4	15,848.9	N/A	-75.0	-93.95	Pass

